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We present results from simulations of the hysteresis loops in the two-dimensional (2D) Ising model
and a cell-dynamical system (CDS) in a linearly, rather than sinusoidally, varying external field. We find
in the CDS a disorder-induced transition, which has behavior similar to the critical point in the 2D Ising
model. Below the critical point, the area of the hysteresis loops, representing the dissipation per cycle,
scales with the rate of the driving field H as 4 = A, +aH “ with a nearly constant ~0.36+0.08 for the
Ising model and 0.6610.02 for the CDS. Thus, the CDS belongs to the class of mean-field models,
which is different from that of the Ising model. Above the critical point, both the Ising model and the
CDS give 4,=0 and an «a that increases with temperature and disorder.

PACS number(s): 64.60.Cn, 05.50.+q, 75.10.Hk, 75.60.—d

I. INTRODUCTION

Recently there is increasing interest in phase transi-
tions driven by a time-dependent external field. Theoreti-
cal [1-10] and experimental [11,12] results have demon-
strated that the energy dissipation, represented by the
area of the hysteresis loops A4, can be cast into a scaling
form ’

A~HQP (1

for low amplitude H, and frequency () of the sinusoidally
varying field. The first theoretical results [1] on the
large-N model gave a~0.66 and S~0.33. It is now
clear, however, from both numerical [3,6,9] and analyti-
cal [3,6] outcomes, that the exponents should be
a=pB~0.5, since in the large-N model the two phases
with opposite magnetization are connected by continuous
paths that can circumvent the barrier between them ow-
ing to the continuous symmetry. Numerical simulations
on discrete models with scalar order parameters are also
at hand. The Monte Carlo simulation of the two-
dimensional (2D) Ising model by Lo and Pelcovits (LP)
[2] gave rise to the exponents a~0.461t0.05 and
B~0.36%0.06 in narrow ranges of H, and Q. The simu-
lation of a cell-dynamical system (CDS) for the time-
dependent Ginzburg-Landau equation for a scalar 2D
(®%)? model by Sengupta, Marathe, and Puri (SMP) [4]
yielded a ~0.47+0.02 and B~0.4010.01 in wider ranges
of the parameters. It was claimed to be in accordance
with the Ising model and to belong to the same universal-
ity class. However, it is fitted to a four-parameter form
ax +bx? with a larger b =30.7 than a =5.9, where x is
given by Eq. (1). In fact, the double logarithm plot of the
area of the hysteresis loops versus H, for different fre-
quencies in Fig. 3 of SMP clearly shows that there is no
single exponent a, since it depends on Q.

Motivated by the experimental techniques of linear
driving fields both in internal friction [13] and in
differential scanning calorimeter (DSC) [14] measure-
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ments, which also lead to power law variation of energy
dissipation with the scanning rate of the driving field, we
have investigated systematically the energy dissipation
both in magnetic [9] and in thermal [10] hysteresis with
the rate of the linear driving field in the large-N model.
Results show that the relation between the energy dissi-
pation per cycle and the rate of the field, H, is divided
into two classes. One has

A~H"? ()

which includes the hysteresis loops with continuous paths
circumventing the barrier between the two phases, like
the model with O(N) symmetry. The other, the mean-
field class, appears to be

A=A,+aH? 3)

which covers primarily the mean-field models [11,9], as
well as the thermal hysteresis loops [10] and the double
hysteresis loops [9] in the large-N (®?)* model, where 4,
and a are constants. In this class, the transition can only
take place beyond the spinodal point, where the energy
barrier vanishes. As a consequence, there is a finite dissi-
pation even at zero scanning rate. Thus it is desirable to
investigate discrete models with a scalar order parameter
both to resolve the discrepancy and to search for new
classes.

In this paper, we perform simulations of the 2D Ising
model (Sec. II) and CDS (Sec. III) of LP and SMP, with a
linear, rather than a sinusoidal driving field. Results
show that they belong to different classes in contrast to
the previous results. The Ising model belongs to a new
class, whereas the CDS belongs to the mean-field class.
We also find in the CDS a disorder-induced transition,
which has similar behavior to the critical point in the 2D
Ising model. In other words, above the transition point,
the scaling exponent for both models increases
significantly with the temperature and disorder, while
below it the exponent is nearly constant.
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II. ISING MODEL

Consider a 2D Ising model on a square lattice with a
linear sweeping external magnetic field H'. The Hamil-
tonian is given by

H= —J’Esisj-—H’(t)zs,- s 4)
(ij) i

where s;==+1, J’' denotes the coupling constant, and
(i,j) the nearest-neighbor pairs. We employ the stan-
dard Metropolis Monte Carlo algorithm [15] and period-
ic boundary conditions. Dimensionless parameters will
be used below for clarity, and hence the temperature is
given by the inverse coupling J =BJ' and the magnetic
field H =BH’, where B=1/kpT. Thus the critical tem-
perature is reached at J=J,=—In(1—V2)/2=0.44
[16].

Given a coupling j and a field sweeping rate H, we
chose a sufficiently large initial field to saturate the sys-
tem in one direction, and then cyclically sweep the field
in a sawtooth way to obtain hysteresis loops. The time
unit is one Monte Carlo step, within which all the spins
are flipped sequentially in an identical external field fol-
lowing the Monte Carlo algorithm. The lattice size we
used is 50X 50, which is sufficient for the statistics of the
data obtained, though insufficient in the case of sinusoidal
driving [1]. Up to 100X 100 lattice size is also used, and
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FIG. 1. Hysteresis loops of the Ising model at temperatures
below (a) and above (b) the critical temperature. The numbers
indicate the sweeping rate of the external field H.
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the results are found to be independent of the lattice size.
This has also been found previously [2,7].

Generic hysteresis loops are shown in Figs. 1(a) and
1(b), for the temperature below and above the critical
point, respectively. The area of the hysteresis loops
versus the field sweeping rate is plotted in Fig. 2 at
several temperatures. The hysteresis loops below and
above the critical point are quite different. Above the
critical point, only sufficiently large sweep rates can give
rise to hysteresis loops, whereas below it there is a finite
area even for very small rates. This manifests itself clear-
ly in the scaling of the area with the field sweep rate, i.e.,
the area can be best fitted to

A~Ay+aH*, (5)

with a finite 4, for J >J, or T <T,, while 4,=0 for
J <J.. Moreover, for J>J, o approximates to
0.36+0.08, only weakly dependent on J, whereas it in-
creases significantly with decreasing J below J, so that in
the latter case no single exponent a exists. This result is
quite different from that of Ackaryya and Chakrabarti
[7], who found no signature across the critical point. The
exponent 0.3610.08 is also compatible with the result of
LP within the statistical errors.

It is interesting that the simulation results reveal a
nonzero A, for the zero rate below 7. In principle, fluc-
tuations of any amplitude have an infinite amount of time
to induce a transition over the free-energy barrier as the
ramp rate approaches zero. One cannot wait an infinitely
long time to check this result in the simulation, as well as
in real experiments that are plagued by hysteresis. How-
ever, the loop areas of very small rates do deviate sys-
tematically from converging to zero, extrapolating to a
finite A,. Thus it is still not conclusive whether the
nonzero loop area A, results from the finite observed
time or from other intrinsic mechanisms. Our results, in-
cluding the CDS ones below, as well as many real transi-
tions, the nonisothermal martensitic transformation, for
instance, seem to support the latter.
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FIG. 2. Area of the hysteresis loops vs sweeping rate of the
Ising model at various temperatures indicated in the legend.
The straight lines are best fits to the data. Data points without
error bars have negligible errors. Note that 4, has been
deducted from the area of those data with temperature below
the critical temperature (indicated by a star before J ).
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It is reasonable that different behavior has been found
in the hysteretic response below and above the critical
point, as well as in the Ising model and the large-N model
when T <T,, since below T, the scalar Ising model
should overcome the transition barrier between the two
phases, while the large-N model has symmetry paths that
can simply circumvent the barrier. The difference be-
tween the Ising model and the mean-field model may
probably arise from the fluctuations and short range in-
teractions in the former, so that it is easier for the system
to flip from one phase to the other, leading to a smaller a.

When T > T,, on the other hand, the fluctuations of in-
dividual spins are so strong that little correlation persists
between different spins. Accordingly each spin flips in-
dependently. In contrast to the fluctuations that can
trigger various scales of avalanches below T, these in-
dependent fluctuations above T, dissipate extra energy.
As a result, the higher the temperature, the stronger the
fluctuations and hence the bigger the a.

III. CELL-DYNAMICAL SYSTEMS

A cell-dynamical system [17] is a space-time discrete
dynamical system with a continuous variable defined on
J

L[®,(t)]=L(summation of ® in the nearest neighbors)

each lattice point. This variable evolves according to
some rules that relate it to the states at previous time
steps. The CDS has been devised as a computationally
efficient method to model phase separation kinetics. It is
essentially a space-time discretized version of the full
time-dependent Ginzburg-Landau equation.

We use a 2D square lattice with the following update
rule for the variable ®; at site i in the case of noncon-
served order parameter [17,4]:

®,(t +1)=P tanh[D,;(¢)] +DL[DP;(2)]
+Bn(t)+H(t), (6a)

where P (=1.3) and D (=0.5) are constants, chosen to
lie within the stability regime to avoid artifacts [17], n;(#)
is a Gaussian white noise with zero mean and unit vari-
ance, and B is a constant representing the amplitude of
fluctuations or disorder and can be considered as propor-
tional to temperature (not necessarily linearly). L[®;(z)]
is essentially the isotropized discrete Laplacian with the
following definition for the 2D square lattice:

+ & (summation of ® in the next-nearest neighbors) —®,(z) . (6b)

It has been checked that the presence of the next-nearest
neighbors in Eq. (6b) is irrelevant to our results. Periodic
boundary conditions are also applied, and the lattice size
we used is also mainly 50X 50. The results have been
checked as in the Ising model to be independent of the
lattice size, as observed by SMP too.

Hysteresis loops are obtained as in the Ising model, the
only difference being that, as for cellular automata [18],
the update procedures for the CDS are parallel or syn-
chronous. The magnetization M (¢) is acquired as the
average of ® over the whole lattice for every correspond-
ing value of H (t). Generic hysteresis loops are shown in
Figs. 3(a) and 3(b) with different disorder B. The area of
the hysteresis loops versus the scanning rate of the exter-
nal field is presented in Fig. 4.

Comparing with the hysteresis loops of the Ising mod-
el, it can be seen that there is a transition similar to the
critical point of the Ising model, arising from the
different amplitude of the disorder B. The behavior of
the hysteresis loops below and above the critical point
B.~0.451+0.01, as well as the scaling of the area, are all
similar to the Ising model. The only difference is that
a~0.661+0.02 for the CDS, and thus it belongs to the
mean-field class according to Eq. (3). This is possibly be-
cause a mean-field-like average is involved in the CDS, so
that fluctuations are effectively reduced.

There is one more difference between the Ising model
and the CDS when the temperature is sufficiently low and
thus fluctuations are effectively reduced. For the Ising
model, J is thus extremely large and the transition can
only take place near 4J, almost independent of the sweep-
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FIG. 3. Hysteresis loops of the cell-dynamical system at dis-
order B below (a) and above (b) the critical point. The numbers
indicate the sweeping rate of the external field H.
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FIG. 4. Area of the hysteresis loops vs sweeping rate of the
cell-dynamical model at various amplitudes of the fluctuation B
indicated in the legend. Errors are smaller than the sizes of the
symbols and are not shown. The lines and stars have the same
meaning as in Fig. 2.

ing rate; consequently a ~0. Therefore the results of Sec.
II are only for not sufficiently low temperature, otherwise
a would decrease to zero. In contrast, for the CDS, no
peculiarity has been found for B =0 as can be seen in Fig.
4.

The transition induced by the fluctuation B is akin to a
dynamic phase transition [19,1,2,4]. Nevertheless, it is
associated with H—0, while the dynamic transition is
obtained by changing the amplitude of the oscillating
field at fixed frequency and disorder B. It is much more
similar to the usual equilibrium order-disorder transition
induced by temperature, which increases the competence
of entropy. However, almost no finite-size dependence
has been found. A detailed study of the transition is out
of the scope of the present paper.
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IV. SUMMARY

We present results from the simulations of hysteresis
loops in the two-dimensional Ising model and a cell-
dynamical system under a linear rather than a sinusoidal
driving external field. We find in the CDS a transition in-
duced by the amplitude of the fluctuation near
0.4540.01. The transition has similar behavior to the
critical point in the 2D Ising model. Since scalar order
parameters are encountered in both models concerned, a
transition free-energy barrier between the two phases
should be surmounted even for vanishingly small ramp
rates. In contrast, a system with vector order parameters
can simply circumvent the barrier via the continuous
paths. As a result, below the critical point, a nonzero dis-
sipation ensues for vanishing sweeping rates, and the area
of the hysteresis loops, representing the dissipation per
cycle, scales with the rate of the driving field H as Eq. (5)
with a nearly constant a ~0.36+0.08 for the Ising model
in a certain range of the temperature and 0.66+0.02 for
the CDS. Thus the CDS and the Ising model belong to
different classes, in contrast to what has been found pre-
viously. The CDS belongs to the mean-field class, while
the Ising model constitutes a new class. Above the criti-
cal point, on the other hand, both models give 4,=0 and
an a that increases with the temperature and disorder.
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